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ABSTRACT

This thesis formulates and solves a Markov decision problem to find the optimal repair
and replacement policy for a system of multiple components whose failure rates are
age-dependent. We assume that the failure rate for an old component is higher than
for that of a new component. When a component fails, it can either be replaced,
making it new, or repaired, making it functional but old. An old component can also
be replaced proactively. We formulate the model for a single component as a linear
program, and perform parametric analysis on the transition probabilities and system
rewards to understand when different policies are optimal. We extend the model
to include multiple, independent components, and apply the model to a notional
infrastructure network whose performance depends on the state of its network links.
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Executive Summary

This thesis aims to find an optimal repair and replacement policy for a system that
consists of several components. At any time point, each component is either oper-
ational or non-operational. An operational component may fail and become nonop-
erational, and the failure rate increases as the component ages. The real-time per-
formance of the system depends on the subset of components that are operational,
and reaches its best when all components are operational. In order to maintain a
high-level performance of the system in the long run, it is necessary to repair or
replace non-operational components, or even to replace an old, but operational, com-
ponent, before it fails. This thesis formulates and solves a mathematical model for
this problem.

We begin by modeling the behavior of a single component, and categorize the realtime
status of a component into three states: new, old, and failed. The component is
operational in the first two states, and non-operational in the last state. As time goes
by, a new component will either become old or fail at some point. The time in the
new and old state are independent geometric random variables. An old component
will eventually fail. If we choose to repair a failed component, then the component
will become operational, but old. The remaining time to failure has a geometric
distribution with same mean as before the failure. If we choose to replace a failed or
an old component, then it will become new again. The state of a component is known
at all times. We develop this model in the framework of a Markov decision process,
and formulate a linear program to compute the optimal solution. The objective for the
linear program is to minimize the long-run average cost of operating the component.
This cost includes the operational costs, which depends on the state of the component
and any cost for repairs and replacements. The optimal repair and replacement policy
depends on several model parameters such as the component failure rates in different
states, and the cost to repair or to replace a component.

We next extend the model to account for multiple components in the system. This
can be done in a straightforward manner given our modeling framework, but the com-
putational resources required to solve the problem grow very quickly. On a personal

xv



computer, it takes several minutes to compute the optimal repair and replacement
policy for a system with six components, but several hours to compute that for a
system with seven components.

Our modeling framework makes it possible to consider several model variations, such
as limiting the number of components that can be repaired or replaced at the same
time, or studying the system performance if we cannot tell whether a component is
new or old until it fails.

We demonstrate our model by applying it to a fuel network, which consists of nodes
and links connecting them. Each node has either a supply or demand of fuel, and
fuel is transported between nodes via the links. A link corresponds to a component
in this system, and is subject to age-based failure. The system performs at its best
when all links are operational, and the performance degrades with each link becoming
nonoperational. We compute the optimal repair and replacement policy for a fuel net-
work consisting of six links, and draw insight into the optimal repair and replacement
policy via parametric analysis.

Our model is generic and applies to many real-world systems, such as fuel networks,
transportation systems, and electricity grids. The model is flexible such that con-
straints can be added to the linear program to account for a variety of scenarios. The
downside of our model is the computational burden required to solve it as the problem
size increases. A future research direction is to develop efficient heuristic methods
that can produce near-optimal policy with much less computational effort.
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CHAPTER 1:
Introduction

1.1 Motivation
We are surrounded by various systems that influence our life in one way or another.
Some of these systems make our lives more comfortable, while others are essential to
preserve our current level of security or to maintain the daily operations of a military
unit, a company, or even a country.

Regardless of the importance of a system, all systems are subject to failure. Most
physical systems will degenerate over time, and some may fail due to a shock like an
accident or an attack. Typically, a system becomes more likely to fail as it ages. One
way to mitigate the age-based risk of failure is to replace a system proactively, when
the risk of age-based failure becomes too high. Although there are various models in
the literature that address the issue of aged-based failure, most of these models focus
on a single component or on a system as a single entity.

In modern days, most complicated systems consist of more than just one component.
Each of these individual components may fail independently. A system’s performance
may depend not only on the number of operational and non-operational components,
but also on the configuration of which components are operational and which are
not. Motivated by this observation, this thesis aims to find an optimal repair and
replacement policy for a system that consists of several components, where each
component may fail independently and the overall system performance depends on
the operating states of its components.

This simple characterization describes many systems. One such example is a network,
which moves commodity—such as fuel, water, or electricity—between nodes via links.
The links correspond to the components in our model. Each link can either be
operational or not. The performance of such a system depends on the set of links
that are operational. Alderson et al. (2015) introduce a mathematical formulation
for such a network, where they study how to optimize system performance when a
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subset of the links become nonoperational. This thesis complements that work by
allowing the links to degrade and fail, and studies when to repair and replace these
links to improve system resilience.

Government officials need to reinforce the relevance of critical infrastructures—such as
a fuel network—and the importance of the resilience of such infrastructures (see The
White House 2015). Resilience describes, on the one hand, the critical infrastructure’s
ability to withstand damages, and, on the other hand, its ability to remain operational
in the event of a failure. This stresses the importance of an optimal repair and
replacement policy for such systems.

1.2 Overview
This thesis studies when to repair or replace individual components in a complicated
system in order to improve system resilience. We aim for a model that describes a
generic system of multiple independent components which are prone to age-based fail-
ure. Each of these components has individual parameters to describe their behavior.
The system reward depends on the overall state of all components. The component
parameters and the reward structure can be modified to capture the behavior of
various systems.

Chapter 2 reviews the related literature on models and methods for optimal repair
and replacement policies. Chapter 3 introduces a model for a single component that
is subject to aging and failure. We develop a model in the framework of a Markov
decision process, and formulate a linear program to compute the optimal repair and
replacement policy. We apply this model to a canonical example of single-component,
and we conduct parametric analysis to gain insight to the behavior of this model. In
Chapter 4 we extend the single-component model to a model with multiple compo-
nents. We then introduce and examine possible modifications and extensions to model
more complex scenarios of a multiple-component model. In Chapter 5 we apply the
model to a notional fuel network as formulated by Alderson et al. (2015). We then
examine the optimal repair and replacement policy, conduct parametric analyses and
present modifications to the model to capture different scenarios. Finally, Chapter 6
concludes our works and offers a few recommendations.
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CHAPTER 2:
Literature Review

There is a rich literature on systems with components that are subject to failure. For
example, Barlow and Hunter (1961) consider reliability of a single component system.

Derman (1963b) developed a model for optimal replacement policies if the change of
state is Markovian. Derman (1963a) discusses mathematical optimization techniques
for replacement policies.

McCall (1965), Pierskalla and Voelker (1976), and Sherif and Smith (1981) provide
surveys of maintenance models for systems with components that fail stochastically.
Agrawal and Barlow (1984) provide a survey of network reliability models.

This chapter reviews selected works relevant to the type of system under study. We
begin with a review of key modeling features, and then consider previous work using
Markov decision processes to study optimal policies of repair and replacement of aging
components.

2.1 Dimensions of the Problem
There are a variety of repair and replacement models that have been studied in the
literature. Each of these models considers different features and exposes different
tensions and tradeoffs in model behavior. As a background to our model, we examine
some of the dimensions of these problems here.

Discrete vs. Continuous Time. For all models that incorporate time, there is
always the decision between discrete time and continuous time. Discrete time models
use fixed time steps or time periods to measure time. Multiple events can occur
during one time step, but change in the system only occurs at the end of that time
step. The resolution depends on the size of the time-step. In general, a model has
more detail if it uses smaller time steps. However, the size of the time steps should
be meaningful in context of the total modeled time span. Love et al. (2000) and von
Noortwijk and Frangopol (2014) give examples of discrete-time maintenance models.
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Continuous-time models do not divide the time in fixed blocks. An event can happen
at any given time point and the system can change its status at any time point.
Dogramaci and Fraiman (2004) give an example of a continuous-time maintenance
model.

Age-Dependent Failure Rates. One key assumption for all maintenance-related
models is that the failure depends on the age of the system. The implementation of
this behavior depends on if the age of the system is modeled in discrete time or con-
tinuous time. For continuous-time maintenance models, the time to the next failure
is a random value that depends on the age of the system and decreases with age. The
probability of failure increases with age. Therefore, continuous time models need an
associated lifetime distribution that captures that behavior. The technical term for
this type of behavior is Probability Distributions with Increasing Generalized Failure
Rates (IGFR). The Gamma and Weibull distributions are examples for IGFR. Lariv-
iere (2006) explains methods to show that a distribution is in fact IGFR. Discrete-time
models specify the probability that a system fails in the current time step. In general,
the probability of failure increases with each consecutive time step. Pierskalla and
Voelker (1976) and Ross (2014) show various models that use age-depended failure
rates for discrete- and continuous-time models.

Shock-Based Failures. Unlike age-dependent failure rates, some discrete- and
continuous-time models use shock-based failures. These models assume that some
external events or shocks influence the durability of the component. For example, a
shock could be an attack, an accident, or just the regular use of that component. In
models of shock-based failure, the probability of failure increases with the number of
shocks endured. The geometric distribution is widely used to determine the number
of shocks a system can sustain before failure. The Poisson distribution is often used
to describe the number of shocks that happen over a certain time. A shock-based
model is introduced by Zhang (2002).

Perfect vs. Imperfect Repair. All maintenance-related models in the literature
have some mechanism to address a failed system. Some consider a perfect or good-
as-new repair, while others consider an imperfect repair. A perfect repair will reset
a failed component to be a brand new component. An imperfect repair will ensure
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that the system is operational again, but the state of the system is not that of new
one. The probability of failures is reset to that of a component of a certain age or
certain number of shocks. This offset can be fixed, or it can be a random value.
Models use imperfect repair to include the notion that a system can not be repaired
indefinitely. See Zhang (2002) for an example of perfect repair and Love et al. (2000)
for an example of imperfect repair.

Repair vs. Replace. A different notion of prefect and imperfect repair in the same
system is to model repair and replacement separately. The replacement of a failed
system introduces a brand new component to the system. Therefore, this new com-
ponent has a lower failure rate than the original component. The repair of a failed
component does not introduce a new component. The state of the component changes
from failed to an operational state. The age or number of shocks respectively remain
unchanged. Therefore, the failure rate of that component is the same as before. The
replacement is more costly than the repair of a failed component. Repair and replace
models address the tradeoff between higher cost and lower failure rates. See Pierskalla
and Voelker (1976) for examples of such models.

Inventory Constraints. Another dimension of maintenance models is the question
of how to address the supply of spare parts and that of new components. Most
models in the literature consider an unlimited supply of these parts (e.g. Pierskalla and
Voelker 1976). Other models require a certain availability of some sort of resources and
parts to conduct any maintenance action. The cost of buying and storing resources
are also included in these models. Different maintenance actions, such as repair and
replace, often require different amounts or types of resources; therefore the cost of
these actions differ. Rajagopalan (1998) models a system with such constraints.

Maintenance, Minor and Major Repair. Sim and Endrenyi (1993) differentiate
between maintenance, minor repair and major repair. In this context, maintenance
is conducted on the operational system. Minor and major repairs are conducted if
the system has failed. Maintenance slightly decreases the probability of failure of the
operational component. Without maintenance, the wear and tear leads to a failure.
The wear and tear is modeled by continuously increasing the probability of failure
over time. If the system fails, one can decide between minor and major repair. Both
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types of repair will ensure that the system is operational again. A minor repair uses
the least amount of resources, e.g. parts, time, money, possible to achieve operational
readiness. A major repair resets the system to the best state possible. Minor and
major repairs are similar to repair and replace in that aspect. McCall (1965) provides
additional examples of such models.

Proactive Replacement. In contrast to regular replacement, proactive replacement
is conducted while the system is still operational. Sherif and Smith (1981) examine
models which use proactive replacement. The probability of failure increases with the
age of the system. To decrease the probability of failure, an operational component
is replaced with a new component if it reaches a certain age. The tradeoff is that a
proactive replacement is more costly than doing nothing but less costly than a repair
or replacement after a failure.

Complete vs. Incomplete Information. A model that supports state-based deci-
sion making requires that the underlying state is known. It is possible to replace an
old component only if the age of that component is actually known. In the literature,
we find models with two different levels of information. One level of information is to
know if a system is operational or has failed. This level of information is considered the
base level, since it is easy to distinguish between operational and non-operational. In
contrast, a maintenance action on an operational system requires information about
that precise state of the system. The age or number of shocks of the system must
be known to decide if a replacement is necessary. The former cases are known as
cases of incomplete information, while the latter cases are known as cases of complete
information. Pierskalla and Voelker (1976) give examples for models with complete
and incomplete information In Thomas et al. (1987) the state of the system is only
known when it is inspected.

2.2 Markov Decision Processes
A Markov decision process (MDP) is a mathematical framework used to address
decision problems where system behavior is partly random and partly the result of
actions by a decision maker. A key assumption is that of the Markov property, namely
that the future state of the system depends on the current state only and not on past
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states. The reward of a system depends on the time spent in each state, and the core
problem of an MDP is to find a policy for the decision maker that maximizes total
reward.

Ross (2014) provides an introduction to MDPs. A more detailed explanation can be
found in Puterman (2005). They show that to define a Markov decision process, we
need to define its state space, action space, the transition probability associated with
each state-action pair, and the cost associated with each state-action pair.

To minimize the long-run average cost per time period, we can formulate a linear
program. The decision variables represent the long-run fraction of time for each state-
action pair. The objective function is the linear combination of long-run proportion of
time for the state-action pairs and its corresponding reward. The constraints are flow-
balance constraints, where the left-hand side is the long-run fraction of transitions
leaving a state, and the right-hand side is the long-run fraction of transitions entering
a state. See chapter 9.3 of Hillier and Lieberman (2010) for an example formulation
of such a linear program.

The theory of a MDP states that, for our type of model, there exists an optimal
policy. To find this policy we solve the linear program. The solution shows that
for each state only one state-action pair, represented by a decision variable, will be
non zero. This implies the optimal action for that state. By examining all non zero
decision variables we find the optimal action for each state and therefore the optimal
policy for the system

2.3 Our Problem in Context
We aim to find the optimal repair and replacement policy for a system of multiple
components. In the context of the aforementioned problem dimensions, we restrict
attention to the following.

1. We model age-based failure rates instead of shock-based failure rates.
2. We differentiate between repair and replacement. In this context, we understand

repair as an imperfect repair. A repair action will change a component from
non-operational to operational, but the probability of failure will be higher

7



compared to that of a new component. A replacement action will change a
component from non-operational to operational, and the component will have
the same probability of failure as a new component.

3. We allow proactive replacement. A proactive replacement is the replacement of
a component that is operational but not new.

4. We assume complete information. The exact state of all components is known
at any time. The model parameters are also known.

5. We use discrete time instead of continuous time.
6. We do not incorporate inventory constraints.

We use a Markov decision process to find the optimal repair and replacement policy
for a single component system, and then for a system of multiple components. The
complexity of the model depends on two factors: the number of components and the
number of valid state-action pairs in the Markov decision process. Although we do
not consider explicit inventory constraints, we do consider cases where the number of
available workers limits the repairs or replacements that can be performed in any time
period. Since our model is time-discrete, we assume that a repair and replacement
both require one time-step each. A time-continuous model would allow for more
flexibility and could capture various repair and replacement times. We favor the less
flexible discrete-time model, because it allows the use of a very small state-space. A
small state-space is necessary to extend the single component model to a multiple
component model.
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CHAPTER 3:
A Single Component Model

This chapter introduces a mathematical model to study the optimal maintenance
policy of a system whose components are subject to age-based failure rates. We
begin with a single-component model in Section 3.1, and extend it to a system of
multiple components in Chapter 4.

3.1 Model Description
Consider a system that consists of a single component. Time is discrete. In each time
period, the component is in one of the following five states :

1. NEW: The component is as good as new, with a relatively low failure probability.
2. OLD: The component is still operational, but has a higher failure probability.
3. FAILED: The component has failed and is non-operational.
4. REPAIRING: The component is under repair, and is therefore non-operational.

Its state will become OLD after the completion of the repair.
5. REPLACING: The component is being replaced and is therefore non-operational.

Its state will become NEW after the completion of the replacement.

Figure 3.1 shows the possible transitions between these states. Whenever in state
NEW, in the next time period, the component may becomes OLD with probability
α, or become FAILED with probability β, or remain NEW with probability 1−α−β.
Whenever in state OLD, in the next time period, the component may become FAILED
with probability γ, or remain OLD with probability 1− γ. Whether in states NEW
or OLD, the component is operational.

When the component is FAILED, an action needs to be taken to change its state;
otherwise it will remain FAILED in the next time period. There are two such actions.
If we choose to repair a FAILED component, then the state becomes REPAIRING in
the next time period, and then OLD in the following time period. In other words, it
takes one time period to repair a component, and a repaired component is operational
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A component is in one of five possible states. It can transition to another state
according to a transition probability (solid lines) or due to an action taken by
the operator (broken lines). The non shaded states are considered operational
states with a positive reward r. The shaded states are considered non-operational.
Replacing a component incurs cost c1 while repairing incurs cost c2

Figure 3.1: The Single Component Model

but not as good as new. If we choose to replace a FAILED component, then the state
becomes REPLACING in the next time period, and then NEW in the following time
period. In other words, it also takes one time period to replace a component. The
component is nonoperational in states FAILED, REPAIRING, or REPLACING.

As seen in Figure 3.1, when the component is in state OLD, one can choose to
proactively replace the component before it fails. Whether it is wise to do so, however,
depends on the cost parameters, which will be discussed in the next section.
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3.2 Linear Program Formulation
This model can be formulated as a Markov Decision Process. To do so, we specify the
set of possible actions that apply to each state, and then a reward structure associated
with each state-action pair. We then formulate a linear program to compute the
optimal policy that maximizes the long-run average reward per time period.

In each state, there are up to three possible actions :

1. NONE: This action applies to all five states.
2. REPAIR: This action repairs a FAILED component.
3. REPLACE: This action replaces a FAILED component or an OLD component.

Altogether, there are eight meaningful state-action pairs, which are summarized and
enumerated in Table 3.1. Please note that the action REPAIR is applicable in state
FAILED, but not applicable in state REPAIRING. If the action REPAIR is applied
to state FAILED, then the component will transition to state REPAIRING in the
next time period, and the state will become OLD in the following time period. For
the same reason, the action REPLACE is applicable in states OLD or FAILED, but
not applicable in state REPLACING. It is valid to apply action NONE to state
FAILED. In a single component system this is only possible if the cost for repair and
replacement are extremely high compared to the reward.

Table 3.1: Eight Meaningful State-Action Pairs
NONE REPAIR REPLACE

NEW 1 — —
OLD 2 — 6
FAILED 3 7 8
REPAIRING 4 — —
REPLACING 5 — —

When the component is operational (states NEW or OLD), a reward r is received
for each time period, whereas no such reward is received when the component is
nonoperational (states FAILED, REPAIRING, or REPLACING). There is a cost c1
to repair a component, and a cost c2 to replace a component. Note that in the case
of proactive replacement (i.e., REPLACE when the component is in state OLD, the
component will only be non-operational for one time step. If the REPLACE action
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happens while the component is in state FAILED, the component is non-operational
for two time-steps. In the first time-step it transitions to the state FAILED and can
only move to the state REPLACING in the next time step.

We next formulate a linear program to maximize the long-run average profit (reward
less cost) per time period. This is a standard procedure to solve a Markov decision
process. See Hillier and Lieberman (2010) Chapter 19.1 for a detailed explanation.
Let xj denote the long-run fraction of time for state-action pair j, j = 1, . . . , 8. These
xj are the decision variables in the linear program, whose values will imply a policy.
Formally, we solve the following linear program.

max
x1,...,x8

r(x1 + x2 + x6)− c1x4 − c2x5 (3.1)

x1 = x5 + (1− α− β)x1 (3.2)

x2 + x6 = αx1 + x4 + (1− γ)x2 (3.3)

x3 + x7 + x8 = β x1 + γ x2 + x3 (3.4)

x4 = x7 (3.5)

x5 = x6 + x8 (3.6)

xj ≥ 0 j = 1, . . . , 8 (3.7)
8∑
j=1

xj = 1 (3.8)

The objective function in Equation (3.1) is the long-run average reward less cost per
time period. Constraints (3.2) to (3.6) are flow balance constraints, one for each state.
The left-hand side is the flow out of the state, while the right-hand side is the flow
into the state. Constraint (3.7) requires all eight variables to be nonnegative, since
they represent long-run fraction of time. Finally, constraint (3.8) ensures that in each
time period, the process corresponds to one and only one state-action pair.
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3.3 Numerical Demonstration

To implement the linear program, we use the Python Programming Language (PSF
2016) with the Pyomo optimization modeling language (Hart et al. 2012, 2011), and
CPLEX optimizer (IBM 2016) to solve it. We present a numerical example. Consider
the following transition probabilities

α = 0.5, β = 0.1, γ = 0.4,

and the following reward and cost parameters

r = 5, c1 = 1, c2 = 2.

For these parameters, the solver returns the optimal value 2.913, which is the maxi-
mized long-run average profit (reward less cost) per time period. Below is the optimal
solution (rounded to three digits), with the corresponding state-action pair noted in
the parentheses:

x1 = 0.290 (NEW,NONE)

x2 = 0.362 (OLD,NONE)

x3 = 0.000 (FAILED,NONE)

x4 = 0.000 (REPAIRING,NONE)

x5 = 0.174 (REPLACING,NONE)

x6 = 0.000 (OLD,REPLACE)

x7 = 0.000 (FAILED,REPAIR)

x8 = 0.174 (FAILED,REPLACE)

We can derive the optimal decisions from these optimal values. There are two de-
cisions to be made, namely what to do in state FAILED and what to do in state
OLD. In state FAILED, we need to decide among three actions NONE, REPAIR, or
REPLACE. Because

x3 = x4 = 0, x5 = 0.174,
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it follows that the optimal decision is REPLACE in state FAILED. In state OLD, we
need to decide between two actions NONE or REPLACE. Because

x2 = 0.362, x6 = 0,

it follows that the optimal decision is NONE in state OLD (i.e to not REPLACE an
OLD component before it fails).

To summarize, we operate a component when it is either NEW or OLD to earn
reward. When the component fails, we replace it with a new one.

3.4 A Closed Form Solution
For a single component model, it is possible to enumerate all feasible policies and
compute the long-run average reward for each of them. The optimal policy is the
feasible policy that yields the highest long-run reward rate. Recall that when the
component is in state OLD, there are two possible actions: NONE or REPLACE.
When the component is in state FAILED, there are three possible actions: NONE or
REPAIR or REPLACE. Therefore, the total number of feasible policies is 2× 3 = 6.
Below we evaluate these 6 feasible policies using a renewal reward process, so that
the optimal solution can be expressed in a closed form.

Policy 1: OLD – NONE, FAILED – REPAIR.
With this policy, the state will cycle through OLD, FAILED, REPAIRING. Call
it a renewal whenever the process enters state REPAIRING. The number of time
periods in state OLD in a cycle follows a geometric distribution with parameter
γ, so its expected value is 1/γ. Each cycle also consists of 1 time period in state
FAILED and 1 time period in state REPAIRING, so the expected cycle time
is 1/γ + 2. Since the reward is r for each time period in state OLD, and the
repair cost c1 is incurred once in each cycle, the long-run average reward is

1
γ
r − c1
1
γ
+ 2

.

Policy 2: OLD – NONE, FAILED – REPLACE.
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Call it a renewal whenever the process enters state REPLACING. In each cycle,
the number of time periods in state NEW follows a geometric distribution with
parameter α + β. When the process leaves state NEW, it will enter state
OLD with probability α/(α+ β), in which case the component will be in state
OLD for a random number of time periods following a geometric distribution
with parameter γ. Each cycle also consists of exactly 1 time period in state
FAILED and 1 time period in state REPLACING. The long-run average reward
is therefore

1
α+β

r + α
α+β

1
γ
r − c2

1
α+β

+ α
α+β

1
γ
+ 2

.

Policy 3: OLD – REPLACE, FAILED – REPLACE;
Call it a renewal whenever the process enters state REPLACING. In each cycle,
the number of time periods in state NEW follows a geometric distribution with
parameter α+ β. When the process leaves state NEW, whether to states OLD
or FAILED, the action REPLACE will be taken in the following time period,
so the expected cycle time is 1/(α + β) + 1 + 1. In addition, with probability
α/(α+ β) a cycle will include 1 time period in state OLD, earning a reward r,
so the long-run average reward is

1
α+β

r + α
α+β

r − c2
1

α+β
+ 2

.

Policy 4: OLD – REPLACE, FAILED – REPAIR.
Call it a renewal whenever the process enters state REPLACING. The number
of time periods in state NEW follows a geometric distribution with parameter
α+ β, so its expected value is 1/(α+ β). When the process leaves state NEW,
it will enter state OLD with probability α/(α+β), or enter state FAILED with
probability β/(α + β). Since the policy is to REPAIR in state FAILED, each
cycle consists of 1 time period each in states FAILED and REPAIRING with
probability β/(α + β). Each cycle also includes exactly 1 time period in states
OLD and REPLACING, respectively. Therefore, the long-run average reward
is

1
α+β

r − β
α+β

c1 + r − c2
1

α+β
+ β

α+β
+ β

α+β
+ 2

.
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Table 3.2: Feasible Policies
Policy OLD FAILED
1 NONE REPAIR
2 NONE REPLACE
3 REPLACE REPLACE
4 REPLACE REPAIR
5 NONE NONE
6 REPLACE NONE

Policy 5: OLD – NONE, FAILED – NONE.
Once the component reaches state FAILED, it will stay in state FAILED there-
after, so the long-run average reward is 0.
Policy 6: OLD – REPLACE, FAILED – NONE.
Once the component reaches state FAILED, it will stay in state FAILED there-
after, so the long-run average reward is 0.

Table 3.2 summarizes these six feasible policies. The optimal policy is the one that
produces the highest long-run average reward.

Polices 1, 2 and 3 are the most intuitive policies, with Policy 1 being the most
conservative and Policy 3 the most aggressive. Proactive replacement of an OLD
component in Policy 3 has the advantage of keeping the component operational for
an additional time step (i.e., only a single period of “downtime”, vice two periods of
“downtime” during replacement of a FAILED component). Two parameters drive the
decision between active and proactive replacement, specifically the failure probability
in state NEW and the failure probability in state OLD. If failure of an old component
is very unlikely compared to that of a new component, the benefit from proactive
replacement will be small. If the failure of an old component is much more likely
than that of a new component, then the proactive replacement will be beneficial.
Policy 4 is rather unintuitive, since when the component is in state FAILED, we will
REPAIR the component to have it in state OLD in the next time period (earning r in
that time period), and then immediately REPLACE it in the following time period
to have a NEW component. Policy 5 and 6 are the trivial policies, with a long-run
average reward of 0. These two policies correspond to the scenario, where the repair
and replacements are very high relative to the reward, to the point that it is better
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Table 3.3: Policy Rewards for several Transition Probabilities
Probabilities Rewards
α β γ Policy 1 Policy 2 Policy 3 Policy 4

0.40 0.10 0.15 3.7308 3.7143 3.0000 2.9091
0.65 0.10 0.45 2.3947 2.7183 2.7000 2.6481
0.40 0.45 0.50 2.2500 2.6000 2.6364 2.5385
0.30 0.50 0.65 1.8643 1.8846 1.8913 1.9167
0.30 0.45 0.60 2.0000 2.0000 2.0000 2.0000

For all cases r = 5, c1 = 1, c2 = 2. The optimal policy is emphasized.

to shut down the component altogether. It is also possible to have ties among these
policies. Table 3.3 shows examples of transition probabilities for which one of the non
trivial polices is optimal and one example where all polices result in the same reward.

For a single component model, both this method and the computational method in
Chapter 3.2 produce the same optimal solutions. However, for a system with multiple
components, the number of feasible policies grows quickly, so the computation method
in Chapter 3.2 becomes the only viable approach.

3.5 Parametric Analysis of the Single Component
Model

The single-component model has six parameters: the three reward parameters (r, c1,
and c2) and the three transition probabilities (α, β, and γ). This section presents
parametric analysis on how these parameters affect the optimal policy. We consider
only the nontrivial policies and exclude policies 5 and 6 from the analyses.

3.5.1 Parametric Analysis on Transition Probabilities
We perform parametric analysis on the three transition probabilities α, β, and γ. To
do so, we pick the following rewards parameters

r = 5, c1 = 1, c2 = 2.
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Although the only formal constraint is that α, γ, β each reside in the closed interval
[0, 1], we focus on the case β < γ, since in reality an OLD component is more likely
to fail in the next time period than does a NEW component. In addition, we require
α + β ≤ 1, since 1 − α − β represents the probability that a NEW component will
remain in state NEW for another time period, which must be nonnegative.

Figure 3.2: Optimal Policy based on β, γ for a fixed α = 0.1, when r = 5,
c1 = 1 and c2 = 2

Figure 3.2 depicts the optimal policy, when we set α = 1 and vary β and γ. There
are several interesting observations. First, Policy 1 (repair a FAILED component so
the component is never NEW) is optimal only when β ≈ γ in certain areas. Since
the quality of states NEW and OLD are comparable, when a component fails, it is
better to repair it for a smaller cost c1 rather than to replace it for a larger cost
c2. Second, for small β, as γ increases, the quality of an OLD component decreases,
so the optimal policy becomes gradually more aggressive, from Policy 2 (replace in
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state FAILED) to Policy 3 (replace in states FAILED and OLD). Note that we fixed
α = 0.1, so the component is very likely to stay in state NEW. The failure probability
for a component in state NEW is smaller compared to that of state OLD. Therefore it
is beneficial to remain in state NEW as long as possible (i.e., take action REPLACE
very often to remain in state NEW). This leads to a dominance of Policy 3. Third,
for large β, as γ increases, the unintuitive Policy 4 (repair a FAILED component,
use OLD component for one time period, and then immediately replace the OLD
component with a NEW one) becomes optimal.

Since Policy 4 is rather unintuitive and unlikely to be optimal in a realistic scenario, we
examine one of the scenarios from this analysis closer. We pick following parameters:

α = 0.1, β = 0.6, γ = 0.8, r = 5, c1 = 1, c2 = 2.

From the closed form solutions we know, that the long-run average reward rates for
the 6 policies are

1.6154, 1.6733, 1.7083, 1.8056, 0, 0,

respectively. Policy 4 has the highest average reward per time step.

In this example, since α+β = 0.7, the NEW component most likely will become either
OLD or FAILED in the next time period. Furthermore, an OLD component has a
very high probability γ = 0.8 to become FAILED in the next time period. It turns
out that in state FAILED, it is optimal to REPAIR it since c1 = 1 is relatively cheap
to ensure the component will be functional (state OLD) in the next time period. In
addition, as soon as we use the OLD component for one time period, it is optimal
to immediately replace it with a NEW component, since without doing so the OLD
component is likely to fail (probability γ = 0.65) anyway, which will cause one extra
time period of down time.

Figure 3.3 depicts the optimal policy, when we set β = 0.1 and vary α and γ. When
γ is small and α is large, a component in state OLD tends to last for a while before
becoming FAILED, and a component in state NEW tends to become OLD very
quickly, so Policy 1 is optimal (repair in state FAILED). If we fix α, then as γ
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Figure 3.3: Optimal Policy based on α, γ for a fixed β = 0.1, with r = 5,
c1 = 1 and c2 = 2

increases, the quality of state OLD decreases, so the optimal policy becomes more
aggressive (from Policy 1 to Policy 2 to Policy 3).

Figure 3.4 depicts the optimal policy, when we set γ = 0.5 and vary α and β. When α
or β is small, state NEW has great quality, so an aggressive policy to replace in either
states OLD or FAILED is optimal (Policy 3). As either α increases or β increases,
the quality of state NEW becomes closer to that of state OLD, so a less aggressive
policy becomes optimal, namely Policy 2 and then Policy 1.

We also tested several different sets of reward values r, c1, and c2. Although the
optimal policy depends on specific model parameters, the structure of the optimal
policy observed in Figures 3.2 to 3.4 remains the same.
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Figure 3.4: Optimal Policy based on α, β for a fixed γ = 0.5, with r = 5,
c1 = 1 and c2 = 2

3.5.2 Parametric Analysis on Reward Structure
Next we perform parametric analysis on the three reward parameters r, c1 and c2. To
do so we pick the following transition probabilities:

α = 0.5, β = 0.1, γ = 0.4.

While we vary r, c1, c2 between 1 and 10, we focus on the case c1 < c2, since we assume
that REPAIRING a component is less expensive than REPLACING it.

Figure 3.5 depicts the optimal policy, when we set r = 6, and vary c1 and c2. In
almost all cases, the optimal policy is either Policy 1 or Policy 2. In other words, the
optimal action is NONE in state OLD. The only case where it is optimal to replace
in state OLD is (c1, c2) = (1, 1.5)—very small replacement cost. In addition, whether
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Figure 3.5: Optimal policy based on c1, c2 for fixed r = 9, with α = 0.5,
β = 0.1 and γ = 0.4

Policy 1 or Policy 2 is optimal largely depends on the ratio c1/c2. Policy 2 becomes a
more attractive policy (replace in state OLD), either when c1 (repair cost) increases,
or when c2 (replacement cost) decreases.

Figure 3.6 depicts the optimal policy when we set c1 = 1, while varying r and c2.
In all cases, the optimal policy is either Policy 1 or Policy 2; in other words, the
optimal action in state OLD is NONE. For a given value of r, as c2 increases, the
replacement cost becomes more expensive, so it becomes more attractive to simply
repair in state FAILED, therefore Policy 1. For a given value of c2, as r increases, it
becomes more important to keep the component operational as much as possible, so
it becomes more beneficial to replace in state FAILED, therefore Policy 2. These two
structural properties can be clearly seen in Figure 3.6.
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Figure 3.6: Optimal Policy based on r, c2 for fixed c1 = 3, with α = 0.5,
β = 0.1 and γ = 0.4

Figure 3.7 depicts the optimal policy when we set c2 = 7, while varying c1 and r.
First, when r is very small, it becomes possible that the optimal solution is to shut
down the component altogether, if c1 is sufficiently large, leaving an optimal long-
run average reward of 0. In Figure 3.7, a few trivial cases of this nature show up
for r = 1 or r = 1.5, where an optimal policy is not shown. Second, in all cases
shown, the optimal policy is either Policy 1 or Policy 2. In other words, the optimal
action in state OLD is NONE, and the decision is whether to repair (Policy 1) or
replace (Policy 2) in state FAILED. For a given value of c1, as r increases, it becomes
more important to keep the component operational as much as possible, so a more
aggressive maintenance policy, namely Policy 2, becomes optimal. For a given value
of r, as c1 decreases, the repair cost drops, so it becomes more attractive to repair
the component in state FAILED, therefore Policy 1. These two structural properties
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Figure 3.7: Optimal Policy based on r, c1 for fixed c2 = 7, with α = 0.5,
β = 0.1 and γ = 0.4

can be clearly seen in Figure 3.7.

In all scenarios we observe some intuitive structural properties. Different regions are
occupied by distinct optimal policies, which implies that the optimal policy is of a
threshold type, based on the values of the model’s six parameters: α, β, γ, r, c1, c2.
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CHAPTER 4:
A Multiple Component System

This chapter introduces a model for a system with n ≥ 1 components, where each
component behaves the same way as described in Chapter 3. Each component deteri-
orates (from state NEW to state OLD) and fails (from state NEW to state FAILED
or from state OLD to state FAILED) independently. We allow heterogeneous com-
ponents, and write αi, βi and γi for the transition probabilities for component i,
i = 1, . . . , n.

4.1 Linear Program Formulation
A system with multiple components can be modeled by a Markov decision process,
similar to the approach for a single-component system described in Section 3.2. We
write the state of the system as (s1, s2, . . . , sn), where si is the state of component i,
for i = 1, . . . , n. Since each component belongs to one of the five possible states shown
in Table 3.1, there are a total of 5n states. For example, a 2-component system is in
state (3, 1), if component 1 is in state FAILED and component 2 is in state NEW.
There are 25 feasible states for such a system.

The optimal policy for a system with multiple components can be solved by a linear
program, similar to the linear program formulated for the single-component model.
The decision variables are the valid state-action pairs. Recall from Table 3.1 that each
component has 8 valid state-action pairs, so the total number of decision variables
is 8n. Write xj1,j2,...,jn for the long-run fraction of time for the state-action pair
(j1, j2, . . . , jn), where ji ∈ {1, 2, . . . , 8}, for i = 1, . . . , n. The state-action pairs for
each component are as in Table 3.1 For example, in a system with n = 2 components,
the decision variable x2,7 stands for the long-run fraction of time that component 1
is in state OLD and the action is NONE, and component 2 is in state FAILED and
the action is REPAIR. This model has no limitations on how many actions can be
taken in each time step Figure 4.1 depicts the state space and selected transitions for
a system with n = 2 components.
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1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

3,1 3,2 3,3 3,4 3,5

4,1 4,2 4,3 4,4 4,5

5,1 5,2 5,3 5,4 5,5

In a Two-Component Model the system state are the combination of the two
component states. The Figure shows exemplary transitions for the states (1,1) in
solid lines, (2,3) in dashed lines and (5,5) in doted lines.

Figure 4.1: State-Space of a Two-Component Model

The system performance depends directly on the state of the system. Suppose that
the reward is R(j1 . . . jn) for state-action pair (j1 . . . jn). The objective function is to
maximize the long-run reward per time period. The linear program is therefore

max
∑

(j1...jn)

R(j1, j2, . . . , jn)× xj1,j2,...,jn , (4.1)

s.t. flow balance constraints (4.2)∑
xj1,...,jn = 1, (4.3)

xj1,...,jn ≥ 0, for all (j1, . . . , jn) (4.4)

Since there are 5n states, there are 5n flow-balance constraints in Equation (4.2), one
for each state. For example, in a system with n = 2 components, there are 52 = 25
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flow-balance constraints. The flow-balance constraint for state (1, 1) is

x1,1 = (1− α1 − γ1)(1− α2 − γ2)x1,1 + (1− α1 − γ1)x1,5 + (1− α2 − γ2)x5,1 + x8,8,

(4.5)

where the left-hand side is the flow leaving state (1, 1) and the right-hand side is
the flow entering state (1, 1). If both components are in state NEW, then there is a
probability of (1 − α1 − γ1)(1 − α2 − γ2) that both of them will be NEW again in
the next time period. If component 1 is in state NEW and component 2 is in state
REPLACING, then there is a probability (1−α1− γ1) that both components will be
NEW in the next time period, since component 2 will be NEW with probability 1. If
both components are in state REPLACING, then with probability 1 both components
will be in state NEW in the next time period. The flow-balance constraints for the
other states can be formulated analogously.

Below we present an example with n = 2 components. Suppose that each component
has transition probabilities

α = 0.5, β = 0.1, γ = 0.4.

In addition, the action REPAIR costs c1 = 1 and the action REPLACE costs c2 = 2.
The reward function is

R(j1, j2) = 5× the number of operational components.

In other words, each operational component (states NEW or OLD) generates a reward
5 per time period.

For these parameters, the linear program returns the optimal value 5.826, which is the
maximized long-run average profit (reward less cost) per time period. Below is the
optimal solution, with the corresponding state-action pairs noted in the parentheses.
We show only the nonzero decision variables, rounded to three digits. A complete
printout of the optimal solutions can be found in Appendix A.
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x1,1 = 0.084 (NEW,NONE), (NEW,NONE)

x1,2 = 0.105 (NEW,NONE), (OLD,NONE)

x1,5 = 0.050 (NEW,NONE), (REPLACING,NONE)

x1,8 = 0.050 (NEW,NONE), (FAILED,REPAIR)

x2,1 = 0.174 (OLD,NONE), (NEW,NONE)

x2,2 = 0.131 (OLD,NONE), (OLD,NONE)

x2,5 = 0.063 (OLD,NONE), (REPLACING,NONE)

x2,8 = 0.063 (OLD,NONE), (FAILED,REPAIR)

x5,1 = 0.050 (REPLACING,NONE), (NEW,NONE)

x5,2 = 0.063 (REPLACING,NONE), (OLD,NONE)

x5,5 = 0.030 (REPLACING,NONE), (REPLACING,NONE)

x5,8 = 0.030 (REPLACING,NONE), (FAILED,REPLACE)

x8,1 = 0.050 (FAILED,REPLACE), (NEW,NONE)

x8,2 = 0.063 (FAILED,REPLACE), (OLD,NONE)

x8,5 = 0.050 (FAILED,REPLACE), (REPLACING,NONE)

x8,8 = 0.050 (FAILED,REPLACE), (FAILED,REPLACE)

For each component, the only nonzero state-action pairs are (NEW, NONE), (OLD,
NONE), (FAILED, REPLACE), and (REPLACING, NONE). Thus, for each compo-
nent, the optimal solution is to leave it alone until it fails, then replace it.

When comparing these results with those from the single-component model in Sec-
tion 3.3, we observe that each individual component of the two-component model
preserves the same optimal action as the component in the single-component model.
Additionally, the optimal solution of each decision variable in the two-component
model matches the product of the corresponding optimal solutions in the single-
component model. These results can also be understood intuitively, since both com-
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Table 4.1: Parameters for Different Multiple-Component Models
# of Components # of Decision Variables # of Constraints Runtime (sec)

1 8 5 0.023
2 64 25 0.030
3 512 125 0.084
4 4096 625 0.720
5 32768 3125 9.439
6 262144 15625 310.274
7 2097152 78125 26214.107

The runtimes have been measured on a personal Computer with a 2.5 GHz Intel
Core i7 Processor and 16 GB 1600 MHz DDR3 RAM.

ponents are identical and operate independently. This extension to a two-component
model is useful conceptually to validate our logic and to automate the formulation
of the linear program. However, our interest is in the formulation and solution of a
more general system with n components.

Our linear program formulation works for a system with n components, for arbitrary
value of n. However, the number of variables and the number of constraints both
grow rapidly as n grows. For a system with n components, there are 5n states and 8n

state-action-pairs, so the linear program has 8n decision variables and 5n flow-balance
constraints. Table 4.1 shows how the numbers of decision variables and flow balance
constraints grow as n increases. The times to run the linear program on a personal
computer are shown in the last column. We consider a seven-component model as
the largest system that can be solved on a personal computer in a reasonable time.

4.2 Additional Constraints: Limited Workers
Suppose that the action REPAIR requires 1 worker, while the action REPLACE
requires 2 workers. Moreover, assume there are a limited number of available workers.
In this case, only some of the system states are feasible.

Below we demonstrate the idea by a system consisting of n = 2 identical components.
Each of these components has the following parameters:

α = 0.5, β = 0.1, γ = 0.4, r = 5, c1 = 1 c2 = 2.
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In addition, suppose that we have a total of 2 workers available in each time period.
In other words, it is infeasible to repair one component and replace the other (which
requires 3 workers), or to replace both components (which requires 4 workers), in the
same time period. As seen in Table 4.2, actions (4, 5), (5, 4), and (5, 5) are infeasible,
so we can set

x4,5 = x5,4 = x5,5 = 0

in the linear program to enforce this requirement. A complete printout of these results
is in appendix A.

Table 4.2: Required Workers per Action
Action # of Workers Required
(1,4) (2,4) (3,4) (6,4) (7,4) (8,4) 1
(1,5) (2,5) (3,5) (6,5) (7,5) (8,5) (4,4) 2
(4,5) (5,4) 3
(5,5) 4

By setting the number of available workers to different values, we can compare how
the system performance changes, as shown in Figure 4.2. Since in our 2-component
model, the maximal number of workers needed is 2 × 2 = 4, we are interested in
comparing the system performance for the number of workers ranging from 1 to 4.
With 0 worker, both components will be in state FAILED permanently, so the long-
run reward rate is 0. With more than 4 workers, the long-run reward rate is the same
as the case with 4 workers.

As seen in Figure 4.2, the long-run reward rate increases as the number of workers
increases. This result is intuitive, since with more workers, more actions become feasi-
ble. With only one worker, the only feasible action is to repair one failed component.
If both components are in state FAILED, the system needs an additional time period
to repair the second component. It is also not possible to replace a failed component
with just one worker.

In addition, Figure 4.2 shows that the marginal improvement of the long-run reward
rate decreases as the number of workers increases. This result also makes intuitive
sense, since most often the optimal solution requires 1 or 2 workers, and rarely does
it require 3 or 4 workers. In particular, the only situation where 4 workers may be
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Figure 4.2: Reward for Different Number of Workers

needed is when both components are in state FAILED, which occurs very infrequently.
Hence, the improving going from 3 workers to 4 workers is very little.

4.3 Additional Variations
The linear program in Section 4.1 can be modified to account for a variety of real-
world scenarios. Here are a few examples:

1. If the action REPLACE requires a certain machine, and we only have y such
machines available, then we can set all decision variables that replace more than
y components in the same time period equal to 0.

2. If we cannot tell whether the state of a component is states NEW or OLD when
it is operational, and consequently do not want to allow the action REPLACE
in state OLD, then we can set all corresponding decision variables to 0.

3. If the cost for multiple REPLACE actions in the same time step is cheaper per
component, then for a single component in one time step (e.g., discount, fixed
cost), then we can modify the reward structure accordingly.

The value of each feature depends on the application of interest. The next chapter
applies the multiple-component model to a notional infrastructure system of practical
interest.
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CHAPTER 5:
Application to a Fuel System

In this chapter, we apply the multiple component model to the study of a notional
fuel infrastructure system, as defined by Alderson et al. (2015). Figure 5.1 shows a
example of such a fuel network with five nodes and six links. Each node has either a
supply or demand of fuel, represented by positive or negative value respectively. Fuel
is transported between nodes via the links, each of which has a maximum capacity
and cost per unit of fuel that is transported via this edge.

1

5

2 4

3

[5]
[4]

[3]

[3]

[3]
[5]

[-1] [-2]

[-1] [-1]
[5]

2

1

3

4

5

6

The nodes (circles) are numbered from 1 to 5. The number in brackets next to
each node is the supply at that node (a negative number indicates a demand). The
links are numbered from 1 to 6. The number next to these numbers is capacity of
that link. The cost to transport one unit over one edge is 1. The per-unit penalty
for failing to deliver fuel to a demand location is 10.

Figure 5.1: A Six-Component Fuel System

We adopt the minimum-cost flow network formulation defined in Alderson et al.
(2015). This model assumes that the system operator faces two types of costs: flow
delivery costs (for the movement of fuel from supplies to demands) and penalty costs
(for each unit of unsatisfied demand). The overall objective of the operator is to
minimize this aggregate cost under each scenario.

33



We now apply the multiple component model to find the optimal repair and replace-
ment policy for this notional fuel system. We assume that only the links are subject
to failure. Because the fuel system has six edges, we have a six-component model.

5.1 Multiple-Component Model Setup
Our model requires the following input data:

• reward structure of the system,
• repair and replacement costs for each component, and
• transition probabilities for each component.

The starting point for our analysis is a complete reward structure for the network
under each in each possible combination of component (link) states. From the per-
spective of fuel delivery, a link that is NEW or OLD is simply “operational” while a
link that is FAILED, REPAIRING, or REPLACING is “non-operational.” We use the
model from Alderson et al. (2015) to compute the operating cost for the system. For
any combination of operational and non-operational links, the model finds the least
costly solution, including both delivery costs and non-delivery penalties. Table 5.1
lists the system performance associated with each of the 26 = 64 link combinations.

On top of the raw system performance, we additionally add the repair and replace-
ment cost to each decision variables containing the action REPAIR or the action
REPLACE. We must complete the procedure for all 86 = 262, 144 decision variables.
Figure 5.2 shows an example of this process. The resulting reward structure is a list
with 262,144 entries. Due to the large number of entries we refrain from showing the
list here.

We pick following parameters for the components or edges respectively and assume
that the edges are identical in respect to these parameters,

α = 0.2, β = 0.1, γ = 0.3, c1 = 1, c2 = 2.

Further, we introduce the number of workers required to complete one REPAIR action
or REPLACE action. We denote these as w1 and w2 respectively. For the base
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Table 5.1: Performance of a Fuel System under each possible Link Configu-
ration.

Link i state System Link i state System
1 2 3 4 5 6 Performance 1 2 3 4 5 6 Performance
0 0 0 0 0 0 8 1 0 0 0 0 0 10
0 0 0 0 0 1 8 1 0 0 0 0 1 18
0 0 0 0 1 0 9 1 0 0 0 1 0 18
0 0 0 0 1 1 16 1 0 0 0 1 1 18
0 0 0 1 0 0 8 1 0 0 1 0 0 19
0 0 0 1 0 1 8 1 0 0 1 0 1 33
0 0 0 1 1 0 9 1 0 0 1 1 0 41
0 0 0 1 1 1 16 1 0 0 1 1 1 41
0 0 1 0 0 0 8 1 0 1 0 0 0 17
0 0 1 0 0 1 8 1 0 1 0 0 1 17
0 0 1 0 1 0 9 1 0 1 0 1 0 18
0 0 1 0 1 1 16 1 0 1 0 1 1 25
0 0 1 1 0 0 10 1 0 1 1 0 0 19
0 0 1 1 0 1 24 1 0 1 1 0 1 33
0 0 1 1 1 0 32 1 0 1 1 1 0 41
0 0 1 1 1 1 32 1 0 1 1 1 1 41
0 1 0 0 0 0 11 1 1 0 0 0 0 50
0 1 0 0 0 1 12 1 1 0 0 0 1 50
0 1 0 0 1 0 11 1 1 0 0 1 0 50
0 1 0 0 1 1 18 1 1 0 0 1 1 50
0 1 0 1 0 0 12 1 1 0 1 0 0 50
0 1 0 1 0 1 25 1 1 0 1 0 1 50
0 1 0 1 1 0 18 1 1 0 1 1 0 50
0 1 0 1 1 1 25 1 1 0 1 1 1 50
0 1 1 0 0 0 41 1 1 1 0 0 0 50
0 1 1 0 0 1 41 1 1 1 0 0 1 50
0 1 1 0 1 0 41 1 1 1 0 1 0 50
0 1 1 0 1 1 41 1 1 1 0 1 1 50
0 1 1 1 0 0 41 1 1 1 1 0 0 50
0 1 1 1 0 1 41 1 1 1 1 0 1 50
0 1 1 1 1 0 41 0 1 1 1 1 0 50
0 1 1 1 1 1 41 1 1 1 1 1 1 50

For each link i, 0 indicates “operational” and 1 indicates “non-operational.” System 
performance is computed according to the minimum-cost flow model defined in 
Alderson et al. (2015).

scenario, we do not put a limitation on the number of available workers. We pick the
following values:

w1 = 1, w2 = 2.
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Component	1	=	NEW:	NONE
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-
-
-
Repair	Cost
Replace	Cost
-

Cost	to	fulfill
demand

Repair	and
Replacement

Cost

Performance	for	the	system	in	
this	state		

The action “1, 1, 2, 4, 7, 8” translates to component 1 is in state NEW, action is 
NONE; component 2 is in state NEW, action is NONE, component 3 is in state 
OLD, action is NONE, component 4 is in state REPAIRING, action is NONE, 
component 5 is in state REPLACING, action is NONE, component 6 is in state 
FAILED, action is REPLACE. Therefore components 1, 2 and 3 are operational. 
components 4, 5 and 6 are non-operational. The performance of the fuel system 
in this state is 16 (see Table 5.1). Since components 4 and 5 are being repaired or 
replaced we have to add the cost c1 and c2 , respectively. The final performance of 
the system in this state is 16 + 1 + 2 = 19

Figure 5.2: The Reward Mapping Process for a Fuel System

5.2 Optimal Repair and Replacement Policy
With all of the necessary inputs, we can solve the linear program defined in Section
4.1. In the case of the fuel system we want to minimize the long-run average cost
of moving fuel from the supply nodes to the demand nodes. Therefore our objective
function (5.1) is the sum over the long-run average proportion of time the system is
one of these states multiplied with the cost associated for that state.

min
∑

(j1...j262144)

R(j1, j2, . . . , j262144)× xj1,j2,...,j262144 (5.1)

Recall that the non-zero decision variables imply the optimal repair and replacement
policy for this fuel system. For every possible combination of the components states
an optimal action exists. We examine the optimal policy for two illustrative cases.
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Optimal repair and replacement actions, along with resulting states, when all six
components are initially in state FAILED. Left column: the optimal replacement
schedule in the absence of any other events. Center column: if component 1
transitions to state OLD, it is optimal to proactively replace it. Right column: if
components 2 and 4 transition to state FAILED, then these need to be replaced.

Figure 5.3: Optimal Policy if all Components are FAILED

Case 1: all components are FAILED

Consider the case where initially all six components are in state FAILED. Figure 5.3
shows the optimal policy and consecutive states starting from this initial state. In the
first time step the optimal action is to replace components 1, 2, 4 and 5. Since there
is no limitation on the number on actions per time step, it seems intuitive to replace
all components immediately. However, the structure of this network (see Figure 5.1)
is that we can satisfy all demands if just these four components are operational.
Moreover, because a component can only transition once per time step, a component
that just transitioned from state REPLACING to state NEW will remain in state
NEW for at least one time step. By spreading the REPLACE action over multiple
time steps the system reduces the probability of multiple transitions from state NEW
to state OLD or state FAILED in one time step. Following this policy, all components
are operational in time step 5.
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The decision to repair or replace a component does not preclude transitions by other
components. Specifically, other components can transition to state OLD or state
FAILED, creating multiple branches in the sequence of states that result from any
particular policy. Figure 5.3 depicts two other possible branches at time step 4. In
the center column, the component 1 simultaneously transitions from state NEW to
state OLD in time step 4. The optimal action is to replace this component. This is
because components 1 and 2 are the most important in the system: at least one of
them is necessary to satisfy all demands. Therefore the system proactively replaces the
component in state OLD. Since component 2 is still in state NEW and operational all
demands can be satisfied even if component 2 is in state REPLACING and therefore
non-operational. In the right column, components 2 and 4 transition to state FAILED
in time step 4. The optimal action is REPLACE for both components. In this case
the immediate replacement is more beneficial then the spreading observed earlier.
Since there are already different remaining lifetimes for the components there is no
need for additional spreading. Further the other components could transition to state
OLD. The system is very likely to replace components in state OLD. Having more
operational components increases the probability of replacing components in state
OLD without incurring the penalty for not satisfying any demands.

Case 2: all components are OLD

Figure 5.4 shows the optimal policy and consecutive states if initially all six compo-
nents are in state OLD. We observe that in the first time step the optimal action is
to REPLACE components 1, 3 and 6. This seems counterintuitive. Replacing com-
ponents 1 and 2 in the same time step isolates node 2 from the network. Therefore
the system willingly incurs a penalty for unsatisfied demand at this node. However,
this action decreases the probability of future failures. In all consecutive time steps
the system can satisfy all demands while replacing the remaining components still in
state OLD. Thus, in this scenario, it is better to incur a smaller penalty in the short
term than to potentially incur a larger penalty in the future.
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schedule in the absence of any other events. Right column: if component 4
transitions to state FAILED, the replacement of that component is more important
than the replacement of components 2 and 5.

Figure 5.4: Optimal Policy if all Components are OLD

5.3 Parametric Analysis of the Fuel System
Next we vary the parameters for the fuel system to analyze different scenarios and
effects of changes to input parameters. These scenarios show the possible use of the
multiple-component model beyond the identification of optimal repair and replace-
ment policies.

5.3.1 The Value of Information
In the first s et o f s cenarios we a nalyze t he value o f i nformation. We c onsider two 
cases. Under complete information, we assume that the decisions to take either the 
action REPAIR or REPLACE are based on complete knowledge of each component’s 
state (e.g., whether a component is in state NEW, OLD or FAILED). In contrast, 
under incomplete information, we assume that that the decision to take either the 
action REPAIR or REPLACE are based solely on the information that a component is 
operational (e.g., in states NEW or OLD) or non-operational (e.g., in state FAILED). 
The implementation in the linear program is straight forward. In the case of incom-

39



plete information the proactive replacement of a component is infeasible. Therefore
the state-action pair (OLD, REPLACE) can not occur. We fix all decision variables
containing this state-action pair to zero. So the system is prohibited from spending
any proportion of time with a proactive replacement. We compare the performance
of the fuel system with complete and incomplete information. We fix the transition
probabilities for all components (α = 0.2, β = 0.1, γ = 0.3), and vary c1, c2.

Table 5.2: The Value of Information
complete information incomplete information

c1 c2 cost avg. worker cost avg. worker
1 2 15.738 2.115 17.529 1.585
1 3 16.784 2.066 18.321 1.583
2 3 16.786 2.065 18.321 1.584
2 4 17.799 2.00 19.113 1.582

This table shows the long-run average cost and long-run average number of workers
in use per time step for complete and incomplete information and for different
values of c1, c2.

Table 5.2 shows the long-run average cost and long-run average number of workers
in use per time step for a system with complete and incomplete information and for
different values of c1 and c2. First, we can see for identical c1 and c2 the system
with incomplete information is more costly compared to the system with complete
information. The system with complete information benefits from the possibility of
proactive replacements. Second, the system with complete information uses on aver-
age more workers per time step compared to the system with incomplete information.
Proactive replacement of components requires additional workers whereas the system
with incomplete information has less need for workers since it can only use the actions
REPAIR and reactive REPLACE. Therefore fewer workers are required compared to
the system with full information, since here proactive REPLACE action for old com-
ponents is an additional option. Third, with increasing c1 and c2, the average cost
per time step also increases. Since the transition probabilities are identical the com-
ponents will fail with the same probability. The necessary REPAIR and REPLACE
actions are more costly. Therefore the average cost per time step increases as well.
Fourth, the average number of workers per time step depends on the ratio of c1 and
c2. If the REPLACE action is relatively costly compared to the REPAIR action the
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Table 5.3: “Full-Time” Workers
complete information incomplete information

workers cost utilization cost utilization
1 26.341 0.930 26.341 0.930
2 16.685 0.936 18.612 0.735
4 15.756 0.528 17.578 0.394
6 15.738 0.352 17.530 0.265
10 15.738 0.211 17.529 0.158

This table shows effect of different number of “full-time workers” on the long-
run average cost and long-run average utilization for systems with complete and
incomplete information.

average number of workers is lower compared to cases with similar c1 and c2. If the 
REPLACE action is relatively costly the system favors REPAIRS action. Since RE-
PAIR actions require less workers then REPLACE actions, the average number of 
workers per time step is lower.

5.3.2 The Value of Full-Time Workers
In the previous analysis, the assumption is that we could “hire” an infinite amount
of workers for a cost of c1 or c2 to conduct REPAIR or REPLACE actions respec-
tively. In this scenario we examine a fixed number of full-time workers. Since we
don’t “hire” external workers c1 = c2 = 0. We fix the transitions probabilities
(α = 0.2, β = 0.1, γ = 0.3), and vary the number of workers and complete and
incomplete information.

Table 5.3 shows the average cost and average utilization of each worker per time
step for systems with complete and incomplete Information. Recall, that the system
requires one worker for every REPAIR action and two workers for every REPLACE
action. Further recall, that we set c1 = c2 = 0. We assume the cost of parts, etc. are
zero, so c1, c2 are the only cost to “hire” a worker. Therefore the cost will be lower
compared to the scenarios with "hired" workers. Since we consider “full-time workers”,
they will be either “busy” conducting a REPAIR or REPLACE action or be “idle”
(i.e., conduct the NONE action). To capture this, we define utilization to be the
long-run average proportion of time an individual workers conducts a REPAIR or
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REPLACE action.

First, with exception of one worker the average cost per time step is higher for the
system with incomplete information compared to the system with complete infor-
mation. The utilization is lower for the system with incomplete information. These
observations correlate with our findings of the value of information.

Second, the cost and utilization is the same for the scenario with just one worker.
In this scenario the system can not apply REPLACE actions, since it has only one
available worker. Therefore the system can not benefit from the complete information.

Third, to perform all possible actions the system needs twelve workers. Figures 5.5
and 5.6 depict the long-run average cost for different numbers of workers for complete
and incomplete information respectively. In both cases we can see, that the decrease
in cost is significant from 1 to 2 workers. For additional workers the decrease in cost
is diminishing. The same is true for the utilization but less distinctive.

Fourth, from Figure 5.5 we see that the utilization increases slightly from 1 to 2
workers and then decreases continuously for a system with complete information.
With just one worker only REPAIR actions are possible. Therefore the proactive
REPLACE action for OLD components is not possible. The system needs a minimum
of two workers to get this option of proactive actions. Therefore the utilization
spikes for two workers. With additional workers the utilization drops since more
workers can share the load. Fifth, Figure 5.6 depicts the utilization for a system with
incomplete information. The utilization decreases continuously, since more workers
can are available to perform the actions.

5.3.3 The Value of More Reliable Components
In this scenario we vary the transition probabilities α, β and γ. The cost for REPAIR
and REPLACE actions are fixed to c1 = 1, c2 = 2.

Table 5.4 shows the long-run average cost and number of workers in use per time
step for system with complete and incomplete information for varying α, β, γ. First,
we can see the general trends for cost and utilization in a system with complete and
incomplete information also hold for different transition probabilities. Second, the
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For an increasing number of workers the long-run average cost and utilization per
time step decreases. This improvement of cost and utilization diminishes for large
number of workers

Figure 5.5: Long-Run Average Cost and Utilization for a Fuel System with
Full-Time Workers and Complete Information.

long-run average cost and number of average number of workers in use per time step
grows with increasing transition probabilities. Higher transition probabilities mean a
higher rate of failure. Since the components are more likely to fail, more REPAIR and
REPLACE actions are required to keep the system operational. Therefore the system
will induce higher costs. Third, for lower transition probabilities the difference in cost
for systems with complete and incomplete information diminishes. If components in
state OLD are less likely to fail, the benefit of proactive REPLACE actions gets
smaller. The system is takes the risk of failure instead of setting the component
to non-operational for the proactive REPLACE action. If the number of proactive
REPLACE action gets smaller the benefit of complete information gets smaller as
well. Therefore complete information has an higher impact for system with higher
rates of failure.
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For an increasing number of workers the long-run average cost and utilization per
time step decreases. This improvement of cost and utilization diminishes for large
number of workers

Figure 5.6: Long-Run Average Cost and Utilization for a Fuel System with
Full-Time Workers and Incomplete Information.

Table 5.4: Varying Transition Probabilities
complete information incomplete information

α β γ cost avg. worker cost avg. worker
0.02 0.01 0.03 8.536 0.211 8.537 0.205
0.10 0.05 0.15 11.591 1.241 12.076 0.915
0.20 0.10 0.30 15.738 2.115 17.529 1.585
0.30 0.20 0.50 21.633 2.777 24.759 2.226

This table shows the long-run average cost and number of workers in use per time
step decreases if the transition probabilities decrease (i.e., “better components”).
For more reliable components the difference between system with complete and
incomplete information gets smaller.
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CHAPTER 6:
Conclusions and Future Work

6.1 Conclusions
The Multiple-Component Model is suitable to study of optimal repair and replacement
policies for any system with n independent components that are prone to age-based
failure. Due to its generic nature we can apply the model to various systems of
multiple components. The fuel system is just one of many possible examples. The
model solution provides an optimal repair and replacement strategy for every possible
state of the system. Such a policy allows an operator to maintain his system optimally.

We can extend or modify the linear program used to solve the Markov decision process
to capture different scenarios. The option to add additional constraints and change
the reward structure of the objective function additionally highlights the generic na-
ture of this model.

The Multiple-Component Model can provide additional insights as well. As illustrated
in this thesis, the results of parametric analyses can provide additional information on
the consequences of potential changes to the system, such as the value of using more
reliable components. Moreover, it is possible to adjust the linear program explicitly
to consider additional constraints, such as the limited availability of repair crews. All
of these modifications can aid in policy development.

6.2 Future Work
The formulation and analysis of the Multiple-Component Model depends on sev-
eral assumptions that help to make the analysis simpler and the computation more
tractable. The model is time-discrete, and the representation of component age has
been simplified to just "NEW" and "OLD". In addition, components are assumed
to age and fail independently of one another. A higher resolution representation of
system age and more realistic dependencies would significantly increase the complex-
ity and the computational burden to solve the linear program. It would also increase
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the input data requirements for running a model. In its current form, we can solve
a system with seven components in a reasonable time on a personal computer. With
additional computational power it should be possible to solve the model for system
of more the seven components and/or to increase the resolution of the model.

Future work should consider ways of increasing the realism (and applicability) of
the model, while also looking to decrease the computational burden to solve it. For
example, we know that increasing model realism often requires additional constraints
for the linear program. These constraints could render some policies to be infeasible
and thereby actually reduce the number of feasible solutions.

Another avenue for future work could be to identify ways in which a larger system
can be decomposed into smaller sub-systems that can be solved independently. Such
ideas could take advantage of the growing power of parallel computing platforms, and
thereby greatly increase the scale of systems that can be studied in practice.

Finally, in situations where exact solutions to large systems are not obtainable, it
could be worthwhile to look for suitable heuristic approaches that obtain solutions
that are “good enough” given limited computing resources.
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APPENDIX A:
Results from the Linear Program

A.1 Two-Component Model
Two components with identical parameters:

α = 0.5, β = 0.1, γ = 0.4, r = 5, c1 = 1 c2 = 2

Object ive value i s 5 .826087
Var iab le X
{( ’ 1 ’ , ’ 1 ’ ) : 0 .08401596303297629 ,
( ’ 1 ’ , ’ 2 ’ ) : 0 .10501995379122034 ,
( ’ 1 ’ , ’ 3 ’ ) : 0 . 0 ,
( ’ 1 ’ , ’ 4 ’ ) : 0 . 0 ,
( ’ 1 ’ , ’ 5 ’ ) : 0 .05040957781978575 ,
( ’ 1 ’ , ’ 6 ’ ) : 0 . 0 ,
( ’ 1 ’ , ’ 7 ’ ) : 0 . 0 ,
( ’ 1 ’ , ’ 8 ’ ) : 0 .05040957781978576 ,
( ’ 2 ’ , ’ 1 ’ ) : 0 .10501995379122034 ,
( ’ 2 ’ , ’ 2 ’ ) : 0 .13127494223902536 ,
( ’ 2 ’ , ’ 3 ’ ) : 0 . 0 ,
( ’ 2 ’ , ’ 4 ’ ) : 0 . 0 ,
( ’ 2 ’ , ’ 5 ’ ) : 0 .06301197227473218 ,
( ’ 2 ’ , ’ 6 ’ ) : 0 . 0 ,
( ’ 2 ’ , ’ 7 ’ ) : 0 . 0 ,
( ’ 2 ’ , ’ 8 ’ ) : 0 .06301197227473218 ,
( ’ 3 ’ , ’ 1 ’ ) : 0 . 0 ,
( ’ 3 ’ , ’ 2 ’ ) : 0 . 0 ,
( ’ 3 ’ , ’ 3 ’ ) : 0 . 0 ,
( ’ 3 ’ , ’ 4 ’ ) : 0 . 0 ,
( ’ 3 ’ , ’ 5 ’ ) : 0 . 0 ,

47



( ’ 3 ’ , ’ 6 ’ ) : 0 . 0 ,
( ’ 3 ’ , ’ 7 ’ ) : 0 . 0 ,
( ’ 3 ’ , ’ 8 ’ ) : 0 . 0 ,
( ’ 4 ’ , ’ 1 ’ ) : 0 . 0 ,
( ’ 4 ’ , ’ 2 ’ ) : 0 . 0 ,
( ’ 4 ’ , ’ 3 ’ ) : 0 . 0 ,
( ’ 4 ’ , ’ 4 ’ ) : 0 . 0 ,
( ’ 4 ’ , ’ 5 ’ ) : 0 . 0 ,
( ’ 4 ’ , ’ 6 ’ ) : 0 . 0 ,
( ’ 4 ’ , ’ 7 ’ ) : 0 . 0 ,
( ’ 4 ’ , ’ 8 ’ ) : 0 . 0 ,
( ’ 5 ’ , ’ 1 ’ ) : 0 .05040957781978576 ,
( ’ 5 ’ , ’ 2 ’ ) : 0 .06301197227473218 ,
( ’ 5 ’ , ’ 3 ’ ) : 0 . 0 ,
( ’ 5 ’ , ’ 4 ’ ) : 0 . 0 ,
( ’ 5 ’ , ’ 5 ’ ) : 0 .03024574669187147 ,
( ’ 5 ’ , ’ 6 ’ ) : 0 . 0 ,
( ’ 5 ’ , ’ 7 ’ ) : 0 . 0 ,
( ’ 5 ’ , ’ 8 ’ ) : 0 .030245746691871446 ,
( ’ 6 ’ , ’ 1 ’ ) : 0 . 0 ,
( ’ 6 ’ , ’ 2 ’ ) : 0 . 0 ,
( ’ 6 ’ , ’ 3 ’ ) : 0 . 0 ,
( ’ 6 ’ , ’ 4 ’ ) : 0 . 0 ,
( ’ 6 ’ , ’ 5 ’ ) : 0 . 0 ,
( ’ 6 ’ , ’ 6 ’ ) : 0 . 0 ,
( ’ 6 ’ , ’ 7 ’ ) : 0 . 0 ,
( ’ 6 ’ , ’ 8 ’ ) : 0 . 0 ,
( ’ 7 ’ , ’ 1 ’ ) : 0 . 0 ,
( ’ 7 ’ , ’ 2 ’ ) : 0 . 0 ,
( ’ 7 ’ , ’ 3 ’ ) : 0 . 0 ,
( ’ 7 ’ , ’ 4 ’ ) : 0 . 0 ,
( ’ 7 ’ , ’ 5 ’ ) : 0 . 0 ,
( ’ 7 ’ , ’ 6 ’ ) : 0 . 0 ,
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( ’ 7 ’ , ’ 7 ’ ) : 0 . 0 ,
( ’ 7 ’ , ’ 8 ’ ) : 0 . 0 ,
( ’ 8 ’ , ’ 1 ’ ) : 0 .050409577819785764 ,
( ’ 8 ’ , ’ 2 ’ ) : 0 .06301197227473217 ,
( ’ 8 ’ , ’ 3 ’ ) : 0 . 0 ,
( ’ 8 ’ , ’ 4 ’ ) : 0 . 0 ,
( ’ 8 ’ , ’ 5 ’ ) : 0 .030245746691871453 ,
( ’ 8 ’ , ’ 6 ’ ) : 0 . 0 ,
( ’ 8 ’ , ’ 7 ’ ) : 0 . 0 ,
( ’ 8 ’ , ’ 8 ’ ) : 0 .03024574669187147}

A.2 Two-Component-Model with 1 Worker Con-
straint

Two components with identical parameters:

α = 0.5, β = 0.1, γ = 0.4, r = 5, c1 = 1 c2 = 2

Object ive value i s 4 .999271
Var iab le X

( ’ 5 ’ , ’ 8 ’ ) 0
( ’ 2 ’ , ’ 2 ’ ) 0 .27352297593
( ’ 8 ’ , ’ 3 ’ ) 0 . 0
( ’ 6 ’ , ’ 7 ’ ) 0 . 0
( ’ 5 ’ , ’ 5 ’ ) 0
( ’ 8 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 6 ’ ) 0 . 0
( ’ 7 ’ , ’ 2 ’ ) 0 .132101466894
( ’ 3 ’ , ’ 7 ’ ) 0 . 0
( ’ 2 ’ , ’ 7 ’ ) 0 .11589269795
( ’ 8 ’ , ’ 4 ’ ) 0 . 0
( ’ 7 ’ , ’ 6 ’ ) 0 . 0
( ’ 3 ’ , ’ 4 ’ ) 0 . 0
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( ’ 1 ’ , ’ 2 ’ ) 0 . 0
( ’ 4 ’ , ’ 4 ’ ) 0
( ’ 7 ’ , ’ 5 ’ ) 0
( ’ 2 ’ , ’ 3 ’ ) 0 . 0
( ’ 4 ’ , ’ 6 ’ ) 0 . 0
( ’ 4 ’ , ’ 7 ’ ) 0 .0966042629062
( ’ 3 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 7 ’ ) 0 . 0
( ’ 5 ’ , ’ 4 ’ ) 0
( ’ 4 ’ , ’ 3 ’ ) 0 . 0
( ’ 7 ’ , ’ 1 ’ ) 0 . 0
( ’ 2 ’ , ’ 8 ’ ) 0 . 0
( ’ 8 ’ , ’ 5 ’ ) 0
( ’ 3 ’ , ’ 3 ’ ) 0 . 0
( ’ 5 ’ , ’ 3 ’ ) 0
( ’ 7 ’ , ’ 4 ’ ) 0 .0463570791798
( ’ 2 ’ , ’ 4 ’ ) 0 .166139881676
( ’ 8 ’ , ’ 1 ’ ) 0 . 0
( ’ 1 ’ , ’ 1 ’ ) 0 . 0
( ’ 6 ’ , ’ 1 ’ ) 0 . 0
( ’ 5 ’ , ’ 7 ’ ) 0
( ’ 6 ’ , ’ 2 ’ ) 0 . 0
( ’ 7 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 5 ’ ) 0
( ’ 4 ’ , ’ 5 ’ ) 0
( ’ 6 ’ , ’ 4 ’ ) 0 . 0
( ’ 6 ’ , ’ 5 ’ ) 0
( ’ 3 ’ , ’ 2 ’ ) 0 . 0
( ’ 5 ’ , ’ 2 ’ ) 0
( ’ 2 ’ , ’ 6 ’ ) 0 . 0
( ’ 2 ’ , ’ 5 ’ ) 0
( ’ 6 ’ , ’ 8 ’ ) 0 . 0
( ’ 4 ’ , ’ 1 ’ ) 0 . 0
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( ’ 8 ’ , ’ 6 ’ ) 0 . 0
( ’ 3 ’ , ’ 6 ’ ) 0 . 0
( ’ 4 ’ , ’ 8 ’ ) 0 . 0
( ’ 5 ’ , ’ 6 ’ ) 0
( ’ 7 ’ , ’ 7 ’ ) 0 . 0
( ’ 2 ’ , ’ 1 ’ ) 0 . 0
( ’ 8 ’ , ’ 2 ’ ) 0 . 0
( ’ 6 ’ , ’ 6 ’ ) 0 . 0
( ’ 1 ’ , ’ 3 ’ ) 0 . 0
( ’ 3 ’ , ’ 1 ’ ) 0 . 0
( ’ 7 ’ , ’ 3 ’ ) 0 .0437636761488
( ’ 1 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 4 ’ ) 0 . 0
( ’ 4 ’ , ’ 2 ’ ) 0 .125617959316
( ’ 8 ’ , ’ 7 ’ ) 0 . 0
( ’ 3 ’ , ’ 5 ’ ) 0
( ’ 6 ’ , ’ 3 ’ ) 0 . 0
( ’ 5 ’ , ’ 1 ’ ) 0

A.3 Two-Component-Model with 2 Worker Con-
straint

Two components with identical parameters:

α = 0.5, β = 0.1, γ = 0.4, r = 5, c1 = 1 c2 = 2

Object ive value i s 5 .774964
Var iab le X

( ’ 5 ’ , ’ 8 ’ ) 0 .0213501911569
( ’ 2 ’ , ’ 2 ’ ) 0 . 0
( ’ 8 ’ , ’ 3 ’ ) 0 . 0
( ’ 6 ’ , ’ 7 ’ ) 0 . 0
( ’ 5 ’ , ’ 5 ’ ) 0
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( ’ 8 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 6 ’ ) 0 . 0
( ’ 7 ’ , ’ 2 ’ ) 0 . 0
( ’ 3 ’ , ’ 7 ’ ) 0 . 0
( ’ 2 ’ , ’ 7 ’ ) 0 . 0
( ’ 8 ’ , ’ 4 ’ ) 0 . 0
( ’ 7 ’ , ’ 6 ’ ) 0 . 0
( ’ 3 ’ , ’ 4 ’ ) 0 . 0
( ’ 1 ’ , ’ 2 ’ ) 0 .123780594901
( ’ 4 ’ , ’ 4 ’ ) 0 . 0
( ’ 7 ’ , ’ 5 ’ ) 0 . 0
( ’ 2 ’ , ’ 3 ’ ) 0 . 0
( ’ 4 ’ , ’ 6 ’ ) 0 . 0
( ’ 4 ’ , ’ 7 ’ ) 0 . 0
( ’ 3 ’ , ’ 8 ’ ) 0 .01070287741
( ’ 1 ’ , ’ 7 ’ ) 0 . 0
( ’ 5 ’ , ’ 4 ’ ) 0
( ’ 4 ’ , ’ 3 ’ ) 0 . 0
( ’ 7 ’ , ’ 1 ’ ) 0 . 0
( ’ 2 ’ , ’ 8 ’ ) 0 .0356784321344
( ’ 8 ’ , ’ 5 ’ ) 0 .0671050732157
( ’ 3 ’ , ’ 3 ’ ) 0 . 0
( ’ 5 ’ , ’ 3 ’ ) 0 . 0
( ’ 7 ’ , ’ 4 ’ ) 0 . 0
( ’ 2 ’ , ’ 4 ’ ) 0 . 0
( ’ 8 ’ , ’ 1 ’ ) 0 .0687614965145
( ’ 1 ’ , ’ 1 ’ ) 0 .0655666495237
( ’ 6 ’ , ’ 1 ’ ) 0 . 0
( ’ 5 ’ , ’ 7 ’ ) 0 . 0
( ’ 6 ’ , ’ 2 ’ ) 0 . 0
( ’ 7 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 5 ’ ) 0 .0430802921783
( ’ 4 ’ , ’ 5 ’ ) 0
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( ’ 6 ’ , ’ 4 ’ ) 0 . 0
( ’ 6 ’ , ’ 5 ’ ) 0 . 0
( ’ 3 ’ , ’ 2 ’ ) 0 . 0
( ’ 5 ’ , ’ 2 ’ ) 0 .0560918105155
( ’ 2 ’ , ’ 6 ’ ) 0 .0917457442415
( ’ 2 ’ , ’ 5 ’ ) 0 .103617132102
( ’ 6 ’ , ’ 8 ’ ) 0 . 0
( ’ 4 ’ , ’ 1 ’ ) 0 . 0
( ’ 8 ’ , ’ 6 ’ ) 0 . 0
( ’ 3 ’ , ’ 6 ’ ) 0 . 0
( ’ 4 ’ , ’ 8 ’ ) 0 . 0
( ’ 5 ’ , ’ 6 ’ ) 0 . 0
( ’ 7 ’ , ’ 7 ’ ) 0 . 0
( ’ 2 ’ , ’ 1 ’ ) 0 .127399677967
( ’ 8 ’ , ’ 2 ’ ) 0 .0361851037637
( ’ 6 ’ , ’ 6 ’ ) 0 . 0
( ’ 1 ’ , ’ 3 ’ ) 0 . 0
( ’ 3 ’ , ’ 1 ’ ) 0 . 0
( ’ 7 ’ , ’ 3 ’ ) 0 . 0
( ’ 1 ’ , ’ 8 ’ ) 0 .0543252525535
( ’ 1 ’ , ’ 4 ’ ) 0 . 0
( ’ 4 ’ , ’ 2 ’ ) 0 . 0
( ’ 8 ’ , ’ 7 ’ ) 0 . 0
( ’ 3 ’ , ’ 5 ’ ) 0 . 0
( ’ 6 ’ , ’ 3 ’ ) 0 . 0
( ’ 5 ’ , ’ 1 ’ ) 0 .0946096718215

A.4 Two-Component-Model with 3 Worker Con-
straint

Two components with identical parameters:

α = 0.5, β = 0.1, γ = 0.4, r = 5, c1 = 1 c2 = 2
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Object ive value i s 5 .788291
Var iab le X

( ’ 5 ’ , ’ 8 ’ ) 0 .0223668600677
( ’ 2 ’ , ’ 2 ’ ) 0 . 0
( ’ 8 ’ , ’ 3 ’ ) 0 . 0
( ’ 6 ’ , ’ 7 ’ ) 0 . 0
( ’ 5 ’ , ’ 5 ’ ) 0
( ’ 8 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 6 ’ ) 0 . 0
( ’ 7 ’ , ’ 2 ’ ) 0 . 0
( ’ 3 ’ , ’ 7 ’ ) 0 . 0
( ’ 2 ’ , ’ 7 ’ ) 0 . 0
( ’ 8 ’ , ’ 4 ’ ) 0 . 0
( ’ 7 ’ , ’ 6 ’ ) 0 . 0
( ’ 3 ’ , ’ 4 ’ ) 0 . 0
( ’ 1 ’ , ’ 2 ’ ) 0 .117807949618
( ’ 4 ’ , ’ 4 ’ ) 0 . 0
( ’ 7 ’ , ’ 5 ’ ) 0 . 0
( ’ 2 ’ , ’ 3 ’ ) 0 . 0
( ’ 4 ’ , ’ 6 ’ ) 0 . 0
( ’ 4 ’ , ’ 7 ’ ) 0 . 0
( ’ 3 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 7 ’ ) 0 . 0
( ’ 5 ’ , ’ 4 ’ ) 0 . 0
( ’ 4 ’ , ’ 3 ’ ) 0 . 0
( ’ 7 ’ , ’ 1 ’ ) 0 . 0
( ’ 2 ’ , ’ 8 ’ ) 0 .0350580531748
( ’ 8 ’ , ’ 5 ’ ) 0 .0564601980987
( ’ 3 ’ , ’ 3 ’ ) 0 . 0
( ’ 5 ’ , ’ 3 ’ ) 0 . 0
( ’ 7 ’ , ’ 4 ’ ) 0 . 0
( ’ 2 ’ , ’ 4 ’ ) 0 . 0
( ’ 8 ’ , ’ 1 ’ ) 0 .0706204307414

54



( ’ 1 ’ , ’ 1 ’ ) 0 .061096959977
( ’ 6 ’ , ’ 1 ’ ) 0 . 0
( ’ 5 ’ , ’ 7 ’ ) 0 . 0
( ’ 6 ’ , ’ 2 ’ ) 0 . 0
( ’ 7 ’ , ’ 8 ’ ) 0 .0109510310861
( ’ 1 ’ , ’ 5 ’ ) 0 .0435952455564
( ’ 4 ’ , ’ 5 ’ ) 0 .0109510310861
( ’ 6 ’ , ’ 4 ’ ) 0 . 0
( ’ 6 ’ , ’ 5 ’ ) 0 . 0
( ’ 3 ’ , ’ 2 ’ ) 0 . 0
( ’ 5 ’ , ’ 2 ’ ) 0 .058267440861
( ’ 2 ’ , ’ 6 ’ ) 0 .0928247011415
( ’ 2 ’ , ’ 5 ’ ) 0 .103265134451
( ’ 6 ’ , ’ 8 ’ ) 0 . 0
( ’ 4 ’ , ’ 1 ’ ) 0 . 0
( ’ 8 ’ , ’ 6 ’ ) 0 . 0
( ’ 3 ’ , ’ 6 ’ ) 0 . 0
( ’ 4 ’ , ’ 8 ’ ) 0 . 0
( ’ 5 ’ , ’ 6 ’ ) 0 . 0
( ’ 7 ’ , ’ 7 ’ ) 0 . 0
( ’ 2 ’ , ’ 1 ’ ) 0 .14069358754
( ’ 8 ’ , ’ 2 ’ ) 0 .0382620424839
( ’ 6 ’ , ’ 6 ’ ) 0 . 0
( ’ 1 ’ , ’ 3 ’ ) 0 . 0
( ’ 3 ’ , ’ 1 ’ ) 0 . 0
( ’ 7 ’ , ’ 3 ’ ) 0 . 0
( ’ 1 ’ , ’ 8 ’ ) 0 .0530709637219
( ’ 1 ’ , ’ 4 ’ ) 0 . 0
( ’ 4 ’ , ’ 2 ’ ) 0 . 0
( ’ 8 ’ , ’ 7 ’ ) 0 . 0
( ’ 3 ’ , ’ 5 ’ ) 0 . 0
( ’ 6 ’ , ’ 3 ’ ) 0 . 0
( ’ 5 ’ , ’ 1 ’ ) 0 .0847083703953
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A.5 Two-Component-Model with 4 Worker Con-
straint

Two components with identical parameters:

α = 0.5, β = 0.1, γ = 0.4, r = 5, c1 = 1 c2 = 2

Object ive value i s 5 .826087
Var iab le X

( ’ 5 ’ , ’ 8 ’ ) 0 .0302457466919
( ’ 2 ’ , ’ 2 ’ ) 0 .131274942239
( ’ 8 ’ , ’ 3 ’ ) 0 . 0
( ’ 6 ’ , ’ 7 ’ ) 0 . 0
( ’ 5 ’ , ’ 5 ’ ) 0 .0302457466919
( ’ 8 ’ , ’ 8 ’ ) 0 .0302457466919
( ’ 1 ’ , ’ 6 ’ ) 0 . 0
( ’ 7 ’ , ’ 2 ’ ) 0 . 0
( ’ 3 ’ , ’ 7 ’ ) 0 . 0
( ’ 2 ’ , ’ 7 ’ ) 0 . 0
( ’ 8 ’ , ’ 4 ’ ) 0 . 0
( ’ 7 ’ , ’ 6 ’ ) 0 . 0
( ’ 3 ’ , ’ 4 ’ ) 0 . 0
( ’ 1 ’ , ’ 2 ’ ) 0 .105019953791
( ’ 4 ’ , ’ 4 ’ ) 0 . 0
( ’ 7 ’ , ’ 5 ’ ) 0 . 0
( ’ 2 ’ , ’ 3 ’ ) 0 . 0
( ’ 4 ’ , ’ 6 ’ ) 0 . 0
( ’ 4 ’ , ’ 7 ’ ) 0 . 0
( ’ 3 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 7 ’ ) 0 . 0
( ’ 5 ’ , ’ 4 ’ ) 0 . 0
( ’ 4 ’ , ’ 3 ’ ) 0 . 0
( ’ 7 ’ , ’ 1 ’ ) 0 . 0
( ’ 2 ’ , ’ 8 ’ ) 0 .0630119722747
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( ’ 8 ’ , ’ 5 ’ ) 0 .0302457466919
( ’ 3 ’ , ’ 3 ’ ) 0 . 0
( ’ 5 ’ , ’ 3 ’ ) 0 . 0
( ’ 7 ’ , ’ 4 ’ ) 0 . 0
( ’ 2 ’ , ’ 4 ’ ) 0 . 0
( ’ 8 ’ , ’ 1 ’ ) 0 .0504095778198
( ’ 1 ’ , ’ 1 ’ ) 0 .084015963033
( ’ 6 ’ , ’ 1 ’ ) 0 . 0
( ’ 5 ’ , ’ 7 ’ ) 0 . 0
( ’ 6 ’ , ’ 2 ’ ) 0 . 0
( ’ 7 ’ , ’ 8 ’ ) 0 . 0
( ’ 1 ’ , ’ 5 ’ ) 0 .0504095778198
( ’ 4 ’ , ’ 5 ’ ) 0 . 0
( ’ 6 ’ , ’ 4 ’ ) 0 . 0
( ’ 6 ’ , ’ 5 ’ ) 0 . 0
( ’ 3 ’ , ’ 2 ’ ) 0 . 0
( ’ 5 ’ , ’ 2 ’ ) 0 .0630119722747
( ’ 2 ’ , ’ 6 ’ ) 0 . 0
( ’ 2 ’ , ’ 5 ’ ) 0 .0630119722747
( ’ 6 ’ , ’ 8 ’ ) 0 . 0
( ’ 4 ’ , ’ 1 ’ ) 0 . 0
( ’ 8 ’ , ’ 6 ’ ) 0 . 0
( ’ 3 ’ , ’ 6 ’ ) 0 . 0
( ’ 4 ’ , ’ 8 ’ ) 0 . 0
( ’ 5 ’ , ’ 6 ’ ) 0 . 0
( ’ 7 ’ , ’ 7 ’ ) 0 . 0
( ’ 2 ’ , ’ 1 ’ ) 0 .105019953791
( ’ 8 ’ , ’ 2 ’ ) 0 .0630119722747
( ’ 6 ’ , ’ 6 ’ ) 0 . 0
( ’ 1 ’ , ’ 3 ’ ) 0 . 0
( ’ 3 ’ , ’ 1 ’ ) 0 . 0
( ’ 7 ’ , ’ 3 ’ ) 0 . 0
( ’ 1 ’ , ’ 8 ’ ) 0 .0504095778198
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( ’ 1 ’ , ’ 4 ’ ) 0 . 0
( ’ 4 ’ , ’ 2 ’ ) 0 . 0
( ’ 8 ’ , ’ 7 ’ ) 0 . 0
( ’ 3 ’ , ’ 5 ’ ) 0 . 0
( ’ 6 ’ , ’ 3 ’ ) 0 . 0
( ’ 5 ’ , ’ 1 ’ ) 0 .0504095778198
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APPENDIX B:
Results from Application to a Fuel System

B.1 Reward Structure for a Five-Component Fuel-
system (Excerpt)

( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 5 ’ , ’ 4 ’ ) : 27 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 5 ’ , ’ 5 ’ ) : 28 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 5 ’ , ’ 6 ’ ) : 26 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 5 ’ , ’ 7 ’ ) : 26 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 5 ’ , ’ 8 ’ ) : 26 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 6 ’ , ’ 1 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 6 ’ , ’ 2 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 6 ’ , ’ 3 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 6 ’ , ’ 4 ’ ) : 25 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 6 ’ , ’ 5 ’ ) : 26 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 6 ’ , ’ 6 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 6 ’ , ’ 7 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 6 ’ , ’ 8 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 7 ’ , ’ 1 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 7 ’ , ’ 2 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 7 ’ , ’ 3 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 7 ’ , ’ 4 ’ ) : 25 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 7 ’ , ’ 5 ’ ) : 26 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 7 ’ , ’ 6 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 7 ’ , ’ 7 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 8 ’ , ’ 1 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 8 ’ , ’ 2 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 8 ’ , ’ 3 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 8 ’ , ’ 4 ’ ) : 25 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 8 ’ , ’ 5 ’ ) : 26 . 0 ,
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( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 8 ’ , ’ 6 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 8 ’ , ’ 7 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 6 ’ , ’ 8 ’ , ’ 8 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 1 ’ , ’ 1 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 1 ’ , ’ 2 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 1 ’ , ’ 3 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 1 ’ , ’ 4 ’ ) : 25 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 1 ’ , ’ 5 ’ ) : 26 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 1 ’ , ’ 6 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 1 ’ , ’ 7 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 1 ’ , ’ 8 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 2 ’ , ’ 1 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 2 ’ , ’ 2 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 2 ’ , ’ 3 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 2 ’ , ’ 4 ’ ) : 25 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 2 ’ , ’ 5 ’ ) : 26 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 2 ’ , ’ 6 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 2 ’ , ’ 7 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 2 ’ , ’ 8 ’ ) : 24 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 3 ’ , ’ 1 ’ ) : 32 . 0 ,
( ’ 1 ’ , ’ 4 ’ , ’ 7 ’ , ’ 3 ’ , ’ 2 ’ ) : 32 . 0 ,
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